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In this paper we consider the question of local observability of chemical systems. We
deal with the problem of reducing the number of observed coordinates. The main goal of
our paper is to prove sufficient conditions which will guarantee local observability.

1. Introduction

In a previous paper we investigated the problem of local controllability of chem-
ical reactions [3]. This paper is devoted to the study of the “dual” problem, namely
local observability. The problem of observability is to find some coordinates with the
property that if these coordinates of two solutions are equal then all coordinates are
equal. Uniqueness of solutions implies that every system will be observable by ob-
serving all coordinates. Thus the further problem is to reduce the number of observed
coordinates, which is very important from the point of view of applications.

Our theoretical investigations will be applied to a special class of polynomial
differential equations, namely the kinetic differential equations. These equations are
interpreted as a deterministic model of chemical reactions. Kinetic differential equa-
tions are essentially nonlinear. Conservation relations imply that kinetic differential
equations have invariant manifolds; thus we use results on local observability within
an invariant manifold [4]. The above naive definition of observability can be translated
into the language of chemistry to get that in experiments it is enough to follow the
time evolution of concentration of some chemical components.

Our paper is organized as follows. In the next section we introduce the definitions
of the mathematical theory of local observability and the mass action kinetic model. In
section 3 there follow the sufficient conditions for local observability, and in section 4
we give three examples. We will discuss our results in section 5.

2. Preliminaries

In this section we introduce the investigated model of chemical reactions and
collect the basis of the mathematical theory of local observability as well.
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2.1. The mass action type model

Let us assume that the physical circumstances are ideal, i.e., in the given reaction
the temperature the pressure and the volume of the vessel are constant and there are
only finitely many chemical components denoted by X (m), m = 1, . . . ,M . In the
chemical reaction the following R reaction steps take place:

M∑
m=1

α(m, r)X (m)
k(r)−→

M∑
m=1

β(m, r)X (m) (r = 1, . . . ,R). (1)

The nonnegative integers α(m, r) and β(m, r) are the stoichiometric coefficients, and
the positive real numbers k(r) are the reaction rate constants. We use three M × R
matrices α, β, obtained from α(m, r), β(m, r), respectively, and define γ := β − α.

The mass action type model of reaction (1) is the differential equation

ẋm =
R∑
r=1

(
β(m, r)− α(m, r)

)
k(r)

M∏
m′=1

xα(m′,r)
m′ (m = 1, . . . ,M ), (2)

where xm(t) is to be interpreted as the concentration of the chemical component
X (m) at time t. Equation (2) is said to be the induced kinetic differential equation of
reaction (1).

2.2. Local observability

Let n, r ∈ N, f ∈ C1(Rn×Rr, Rn), (x∗,u∗) ∈ Rn×Rr such that f (x∗,u∗) = 0.
Fix a T > 0 and, for every ε > 0, define

Uε :=
{
u ∈ Lr∞[0,T ]:

∣∣u(t)
∣∣ 6 ε for a.e. t ∈ [0,T ]

}
.

It is known that there exists an ε0 > 0 such that, if

z ∈ Rn, |z − x∗| < ε0, u ∈ Uε0 ,

then there is a unique absolutely continous function x ∈ W n
11[0,T ], where Wn

11[0,T ]
denotes the set of absolutely continous x : [0,T ]→ Rn functions, with

(i) ẋ(t) = f (x(t),u∗ + u(t)) for a.e. t ∈ [0,T ],

(ii) x(0) = z.

Now fix an arbitrary ε ∈ (0, ε0] and k ∈ {1, . . . ,n}. Let S ⊂ Rn be a k-dimensional
positively ε-invariant submanifold of system (i). The latter means that, roughly speak-
ing, any solution starting from a point of S near enough the equilibrium x∗, will remain
in S, at least for small controls. To be more precise, S is said to be an ε-invariant
manifold of system (i) at x∗ if the conditions z ∈ S, |z − x∗| < ε, u ∈ Uε imply that
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for x in (i) and (ii) we have x(t) ∈ S (t ∈ [0,T ]). Consider the following observation
system:

ẋ= f ◦ (x,u∗ + u), (3)

y= h ◦ x, (4)

where h ∈ C1(Rn, Rm) with m ∈ N, h(x∗) = 0, and x in equation (4) is the solution of
the initial value problem (i)–(ii). The function y is called the observation corresponding
to x.

Definition 1. System (3)–(4) is said to be locally observable at x∗ in S with respect
to Uε if

(a) u ∈ Uε,
(b) zi ∈ S, |zi − x∗| < ε, xi ∈Wn

11[0,T ],

ẋi = f ◦ (xi,u∗ + u), xi(0) = zi for i = 1, 2,

(c) h ◦ x1 = h ◦ x2

imply that z1 = z2 (thus x1 = x2).

Let A := ∂xf (x∗,u∗), C := h′(x∗),

Q :=


C
CA

...
CAn−1

 ,

and let us denote the tangent space of manifold S at x∗ with Tx∗(S) which is to be
considered as a linear subspace of Rn. We will use the following theorem due to
Varga [4]:

Theorem 2. If

Tx∗(S) ∩ KerQ = {0},

then system (3)–(4) is locally observable at x∗ in S with respect to Uε with some
ε ∈ (0, ε0).

3. Sufficient conditions

First we investigate local observability questions in dimension M , i.e., in RM
+ .

It is known that the M -dimensional manifold RM
+ is a positively invariant manifold

of every induced kinetic differential equation (see [1]). In some cases there are other
invariant manifolds, even of smaller dimension than M . These cases will be considered
in section 3.2.
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3.1. The case of dimension M

We start with a linear algebraic lemma which will help us to prove a general
result.

Lemma 3. Let u1, . . . ,un and v1, . . . , vn two basis in Rn. For all I ⊂ {1, . . . ,n},
exists JI ⊂ {1, . . . ,n} with |I ∪ JI | = n such that {ui, vj | i ∈ I , j ∈ JI} forms a
basis in Rn.

Proof. Without loss of generality we can assume that if |I| = l then I = {1, . . . , l}.
We will prove with induction. If l = 1 then using u1 =

∑n
i=1 λivi and the fact that

there exists j such that λj 6= 0 we get that

1
λj
u1 −

∑
i6=j

λi
λj
vi = vj ,

which shows that JI := {1, . . . ,n}\{j} is a good choice.
If we know the result for l = k we can prove it for l = k + 1 in the following

way. Let us denote the JI set for I = {1, . . . , k} by Jk. Then uk+1 =
∑

i∈Jk λivi +∑k
i=1 µiui, and there exists a j ∈ Jk such that λj 6= 0, since vectors u1, . . . ,uk+1 are

linearly independent. Thus the set defined JI := Jk\{j} is a good choice, and the
lemma is proved. �

Theorem 4. If detA 6= 0 then there exists a C ∈ RdM/2e×M which satisfies the
condition of local observability with h′(x∗) ≡ C.

Proof. Let us use the above lemma with u1 := e1, . . . , un := en, where ei is the
ith unit vector, v1 := a1, . . . , vn := an, where ai is the ith row of matrix A, and
I := {1, . . . , dM/2e}. Then lemma 3.1 claims that, after renumbering, the rows of
matrix A, e1, . . . , edM/2e, a1, . . . , abM/2c forms a basis of Rn. This means that if we
define

C :=

 e1
...

edM/2e

 ,

then the matrix [
C
CA

]
has full rank; thus, matrix Q has full rank as well. As a result, we get that the condition
of local observability is satisfied with C defined above. �
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Remark 1. The above theorem gives us the possibility to construct the observation
function. For example, h(z) := C(z − x∗) is a linear observation function which
satisfies the condition of local observability.

Remark 2. The proof of the above general theorem is constructive. Recalling the
naive definition of observability we can say theorem 4 means that if the first bM/2c
coordinates of two solutions are equal then all coordinates are equal.

Remark 3. If R = M and every coordinate of equilibrium x∗ is equal to 1 then the
condition detA 6= 0 and conditions det γ 6= 0 and detα 6= 0 are equivalent because
the following equality holds:

A = γ

k(1)
. . .
k(R)

α.
Now let us reduce the number of the rows of matrix C. The following theorem

deals with the optimal case, i.e., when the number of the rows is equal to 1. Let gA
denote the minimal polynomial of matrix A.

Theorem 5. If gr gA = M then there exists a C ∈ R1×M which satisfies the local
observability condition with h′(x∗) ≡ C.

Proof. From linear algebra we know that if the degree of the minimal polynomial
is maximal then there is a vector which generates a maximal dimensional A-invariant
subspace. This vector can be choosen as C. �

Remark 4. The above theorem means that a suitable linear combination can be ob-
served but, in contrast to theorem 4, the proof is not constructive.

3.2. The case of dimension k < M

As we mentioned earlier, in this section observability questions will be investi-
gated with smaller dimension manifolds than M . Reaction simplices will be chosen
as these manifolds, i.e., the translations of the subspace spanned by the columns of
matrix γ. This subspace will be denoted by S(γ). In this section we consider reactions
which satisfy the inequality R < M . The following theorem deals with the optimal
case again.

Theorem 6. If the columns of matrix γ are eigenvectors of matrix A and the cor-
responding eigenvalues are different then there exists a C ∈ R1×M which satisfies
the sufficient condition for local observability with h′(x∗) ≡ C. Furthermore, we can
choose any C satisfying C /∈ Span{γ1, . . . , γR}⊥, where γ1, . . . , γR are the columns
of matrix γ.
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Proof. Let C be an arbitrary vector satisfying C /∈ Span{γ1, . . . , γR}⊥. We have to
show that KerQ∩ S(γ) = {0} holds or, equivalently, s ∈ S(γ), Qs = 0 imply s = 0.
Since any s from S(γ) is the linear combination of vectors γ1, . . . , γR, it is enough to
show that the vectors si := Qγi, i = 1, . . . ,R, are linearly independent. Since

Qγi =


C
CA

...
CAM−1

 γi =


Cγi
CAγi

...
CAM−1γi

 =


Cγi
λiCγi

...
λM−1
i Cγi

 ,

where λi denotes the eigenvalue corresponding to γi, and using the condition Cγi 6= 0
it is enough to prove that the vectors

1
λi
...

λM−1
i

 , i = 1, . . . ,R,

are linearly independent, which is obvious since the eigenvalues are different. �

We remark that although the conditions of the previous theorem seem to be
restrictive, only matrix γ is fixed and there is a possibility to choose matrix A, namely
matrix A depends not only on the coordinates of the equilibrium but on the coordinates
of u∗ as well.

4. Examples

In this section we will give three examples to demonstrate our results.

4.1. An example for dimension M

Consider the Lotka–Volterra model, i.e., the following reaction:

X → 2X ,

X + Y → 2Y ,

Y →O.
After building up the kinetic differential equation and calculating matrix A one can
see that the minimal polynomial of matrix A is equal to λ2 + 1; thus, the reaction
satisfies the condition of theorem 5. This means that we can observe a suitable linear
combination of the two variables. On the other hand, one can check that detA 6= 0;
thus we can apply theorem 4 giving the possibility to construct one suitable vector C.
Following the proof of theorem 4 one can notice that e1, a1 forms a basis, where a1 is
the first row of matrix A. This means that C = e1 is a good choice and (by remark 1)
h(z) = z1 − 1 is an observation function.
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4.2. An example for dimension k < M

Let us consider the following reaction:

X1→X2,
...

X2M−1→X2M .

The induced kinetic differential equation is

ẋ1 =−u1x1,

ẋ2 = u1x1,
...

ẋ2M−1 =−uMx2M−1,

ẋ2M = uMx2M−1.

If we calculate matrix A in an equilibrium x∗ = (0, a1, . . . , 0, aM ), u∗ = (1, 1,
. . . ,M ,M ) we get

A = blockdiag

([
−1 0
1 0

]
, . . . ,

[
−M 0
M 0

])
.

Let us denote the columns of matrix γ by γi (i = 1, . . . ,M ). It is easy to see that
Aγi = −iγi (i = 1, . . . ,M ). This equality implies local observability after applying
theorem 6.

4.3. Michaelis–Menten reaction

Consider the following reaction (see [2]):

X + Y →Z ,

Z →X + Y ,

Z →X + V.

The induced kinetic differential equation is

ẋ1 =−u1x1x2 + u2x3 + u3x3,

ẋ2 =−u1x1x2 + u2x3,

ẋ3 = u1x1x2 − u2x3 − u3x3,

ẋ4 = u3x3.

If we calculate matrix A in an equilibrium x∗ = (a, 0, 0, 0), u∗ = (1, 1, 1) one can
notice that none of our results can be applied, namely det(A) = 0, gr gA < 4, and the
columns of matrix γ are not eigenvectors of matrix A.
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5. Discussion

First, we return to the problem of reducing the number of control parameters as
it was investigated in [3]. As we mentioned in [3], it is very important to reduce the
number of control parameters from the point of view of chemical engineering science,
since if there is a single control parameter then we may happen realise the control
by changing the temperature. In [3] we gave a condition of reducing the number of
control parameters to a single control parameter in dimension 2. To be more general,
we can use the condition of theorem 5, namely if gr gA < M then it is impossible to
reduce the number of control parameters to a single one.

It would be interesting to investigate reaction–diffusion models as well or to
improve our results by considering not only mass action type models.
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Freud for his help in proving theorem 5. This work was partially supported by the
National Scientific Research Fund under number T014480.

References
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